Аналитическая геометрия учебник

Опубликовано: 03.11.2017

видео аналитическая геометрия учебник

Математика. Урок 1.1. Линейная алгебра. Матрицы и метод Гаусса решения решения СЛАУ

Аналитическая геометрия



Постников М.М.

М.: Наука, 1973. — 754 с.

Эта книга отличается от традиционных учебников аналитической геометрии по крайней мере в двух отношениях. Во-первых, в ней сделана попытка привести изложение аналитической геометрии на уровень строгости и формализации, давно уже достигнутый в учебниках алгебры и анализа. Во-вторых, помимо общеобязательных, стандартных вещей, в ней изложено довольно много материала либо никогда ранее в учебники не включавшегося, либо давно из учебников исключенного.


18.05.2015. Алгебра и геометрия. Лектор Я.М. Ерусалимский.

В современной математике проективная геометрия, на кото­рую, собственно говоря, и ориентирован традиционный курс аналитической геометрии, потеряла уже свое ведущее значение. Поэтому роль «научной базы» курса аналитической геометрии перешла к линейной алгебре. Это ведет к все более тесному слиянию курса аналитической геометрии с курсом линейной алгебры, слиянию, получившему уже организационные формы (читаются «объединенные курсы аналитической геометрии и линейной алгебры» и издаются соответствующие учебники). Тем самым курс аналитической геометрии как курс геометрии фактически ликвидируется, в результате чего студент университета может получить диплом математика, не имея, по существу, никакого представления о комплексе идей и методов классической геометрии плоскости и пространства. Для преодоления этого необходимо заново насытить собственно курс аналитической геометрии (первый семестр) живым и ярким геометрическим материалом, перенеся из него весь, какой только возможно, линейно-алгебраический материал в последующий «объединенный курс аналитической геометрии и линейной алгебры». Конечно, курс аналитической геометрии должен быть в первую очередь по силам студенту — бывшему школьнику. Вместе с тем он должен иметь общематематическое значение, развивать математическую культуру студента и подготавливать его к усвоению программ следующих семестров. Как бы ни была красива и интересна та или иная геометрическая конструкция, если с точки зрения современной математики она ведет в тупик и не находит в ней дальнейшего широкого развития, тратить на нее драгоценное лекционное время, конечно, нельзя.

rss